
 

 

Cognitive Stages in Visual Data Exploration  
M. Adil Yalçın 

University of Maryland 
College Park, MD 20742, USA 

adil@keshif.me 

Niklas Elmqvist 
University of Maryland 

College Park, MD 20742, USA 
elm@umd.edu 

Benjamin B. Bederson 
University of Maryland 

College Park, MD 20742, USA 
bederson@umd.edu 

 
ABSTRACT 
Data exploration requires forming analysis goals, planning actions 
and evaluating results effectively, all of which are complex cogni-
tive activities. Therefore, the data exploration and analysis process 
can be improved through a principled and comprehensive ap-
proach to analyzing the cognitive activities of the user given a 
data exploration tool. However, many taxonomies and evaluations 
focus on a specific tool or specific design guides instead of cogni-
tive activities comprehensively. In this paper, we first present the 
Cognitive Exploration Framework that identifies six stages of 
cognitive activities in visual data exploration. These stages are a 
combination of two activities—planning and assessing—across 
data analysis, interaction, and visualization. Cognitive barriers in 
each stage can lower the success and speed of data exploration. 
The framework also identifies the factors of decision-making, 
existing knowledge and motivation that influence cognitive activi-
ties. We argue that cognitive stages can be supported by improv-
ing the design of tools rather than their computing capabilities. 
We demonstrate how the framework clarifies the structured rela-
tionship between design guides to specific cognitive stages. In 
particular, the framework can also be used to guide evaluation of 
data exploration tools. To reveal cognitive barriers in each stage, 
we focused on the failures instead of success stories, and on moti-
vating self-driven open-ended exploration instead of using 
benchmarked tasks on fixed datasets. With these goals, we studied 
short-term casual use of an exploratory tool by novices with lim-
ited training. Our results reveal cognitive barriers across all stag-
es. We also discuss directions for future research and applications. 
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1. INTRODUCTION 
The value of data can be measured by the knowledge we can ex-
tract from it. Visual tools support exploration for knowledge dis-
covery by creating an interactive dialogue with data. In this paper, 
we focus on the role of a data explorer with a primary goal of 

understanding data by developing and answering questions. This 
is in contrast to consuming pre-extracted knowledge from a 
presentation (such as a news story), communicating results [22], 
or designing data exploration spaces/interfaces for other users [5]. 

Visualization can amplify people’s ability to comprehend data [8]. 
However, using visual tools for data analysis also requires other 
cognitive activities, such as forming analysis goals and interaction 
plans. Barriers to effective cognition can lead us to fruitless paths, 
inaccurate or false knowledge, lost time, or even the abandonment 
of exploration because of confusion and frustration. Existing work 
in modeling visualization or cognitive activities in exploration 
tend to be frameworks that focus on system components [8], [9], 
[21], empirical results from specific tools and study setups [16], 
[29], [30] or surveys [31]. Little work has focused on a compre-
hensive analysis of the cognition on visual data exploration. 

In this paper, we present the Cognitive Exploration Framework 
(CEF) for visual data exploration, a structured overview of six 
cognitive stages in data exploration as the combination of plan-
ning and assessing activities on data analysis, interaction, and 
visualization. We identify the factors of decision-making, 
knowledge and motivation in relation to cognitive activities. By 
its comprehensive coverage of cognitive activities, the framework 
can be used to improve and evaluate the design of exploratory 
tools. First, we demonstrate the rhetorical power of CEF by using 
it to categorize a large number of concrete design guides with 
respect to stages of cognition. Then, in order to use CEF as a lens 
to evaluate tools, we propose an observational study approach that 
focuses on identifying failures and challenges in open-ended ex-
ploration instead of performance on benchmarked tasks or insights 
[46]. Our results from evaluation of an exploratory tool with nov-
ices in a casual setting showcase the inferential power of CEF. 

2. RELATED WORK 
We summarize the related work on the data-driven sensemaking, 
cognition, barriers and costs in visualization and interaction. 

2.1 Sensemaking and Data Visualization 
Sensemaking is an iterative process of gathering and representing 
information, developing insights through manipulation, and pro-
ducing knowledge [55]. The information visualization reference 
model [8], [9] models visualization pipeline from a system point-
of-view as transitions between data, analytical abstraction, visual-
ization abstraction, and view. A nested model [38] can be used to 
evaluate such systems. Yet, these approaches are not based on 
cognitive processes in visual exploration. Information foraging 
[42] describes information search behavior using an analogy with 
animals hunting and gathering food. However, it does not model 
the data interfaces, interaction, and the analytical process. The 
data/frame theory of sensemaking [28] argues that sensemaking is 
composed of cycles of (i) elaborating a mental frame, (ii) preserv-
ing a frame, and (iii) reframing. While it models a reasoning pro-
cess, it does not model the concrete roles of interaction and visual-
ization, and cannot explicitly guide on supporting these processes. 
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2.2 Cognition for Sensemaking 
Higher mental processes such as attention, language use, memory, 
perception, problem solving, and thinking, are the focus of cogni-
tive psychology [14]. Cognition is therefore closely related to 
sensemaking and data visualization. Card et al. [8] define exter-
nalized cognition as the use of an external object to reduce mental 
effort and memory demands when performing a task. David Kirsh 
[27] extends the role of external representations into rearrange-
ment, persistence, independence, reformulation, and natural en-
coding, the use of multiple representations, construction, and sim-
plification of control. In a reverse perspective, Liu and Stasko [35] 
describe mental models as the internal, structural, behavioral, and 
functional analogues of external visualization systems. They argue 
that interaction primarily enables external anchoring, information 
foraging, and cognitive offloading. Distributed cognition models 
transitions across cognitive representations, and can be applied to 
infovis [34]. Walny et al. [57] studied data-sketching as an exter-
nal representation of data understanding. Their analysis focuses 
on finalized sketches as the artifacts, and not on the cognitive 
activities explaining how the participants created or iterated upon 
these sketches. While these studies aim to explain the tools as 
external representations helping cognition, they are primarily 
explanatory. We aim to close the gap between theory and practice 
by building a comprehensive and actionable framework, demon-
strating its link to design, and its use for evaluating tools. 

Shrinivasan [52] presents an analytical reasoning framework with 
three components, data/knowledge/navigation, which can be sup-
ported by special-purpose views in tools. Van Wijk’s model of 
visualization [58] includes perception, knowledge, and explora-
tion as user-level constructs. Green et al. [17] argues these con-
structs are cognitive processes informing each other. We focus on 
data exploration using a holistic model covering a wide range of 
cognitive activities. We identify six cognitive stages, which en-
compass perception as an assessment activity, and discuss the 
cognitive influence of knowledge and motivation factors. 

2.3 Barriers and Costs in Data Exploration 
Generalizing our everyday interactions with the physical world, 
the gulfs of execution and evaluation [39] is a simple, effective, 
and widely adopted model. However, it does not fully explain 
visual data exploration, which involves deep analytical thinking 
and interaction with abstract data interfaces. Lam [31] presents a 
framework of seven interaction costs, based on a survey of usabil-
ity problems reported in 484 papers. Our framework builds upon 
these works by decoupling cognitive and physical activities, and 
exclusively focusing on cognition. Amar and Stasko [1] discuss 
two forms of analytical gaps: (i) worldview gap (what is 
shown↔what needs to be shown to draw a straightforward repre-
sentational conclusion) and (ii) rationale gap (perceiving a rela-
tionship↔being able to explain the confidence and the usefulness 
of it). Cognitive stages extend beyond analytical gaps, and we aim 
to clarify the ambiguous definitions across cognitive activities. 

The behavior of novices can reveal barriers that may be reduced 
or hidden because of existing skills. Grammel et al. [16] conduct-
ed an observational study on how novices construct information 
visualizations. While their study revealed barriers in visualization 
construction, it did not reflect interactive autonomous data explo-
ration since a mediator created visualizations using verbal descrip-
tions of the participants. Kwon et al. [30] studied behavior of 
novices to identify visual analytics roadblocks. Participants were 
given predefined tasks and were offered guidance, which created a 
partially explorative process and limited the extent of reported 
roadblocks. Lee et al. [32] identified five cognitive activities in 

the sensemaking of unfamiliar charts. We argue that the explorer 
would avoid creating unfamiliar visualizations [16]. 

Decision-making as a cognitive activity, and its costs and factors, 
are well-formed within psychology [47]. Yet, decision costs lack a 
focused discussion in the analytics community. Heer et al. [22] 
discusses “constraining the parameter space that users have to 
explore”, but only in the context of visualization. Dou et al. [11] 
studied constrained interactions for solving a math game with 
empirical results suggesting constraints can increase performance. 

3. COGNITIVE EXPLORATION  
     FRAMEWORK 
We present the Cognitive Exploration Framework (CEF) (Figure 
1), which identifies six cognitive stages in visual data exploration 
as a combination of two activities—planning and assessing—
across data analysis, visualization, and interaction. Cognitive bar-
riers are impediments that can be observed, categorized, and stud-
ied across these orthogonal cognitive stages. In addition, the 
framework identifies the factors of decision costs, knowledge, and 
motivation, all of which interact with cognitive stages and influ-
ence the exploratory process and outcomes. 

3.1 Six Stages of Cognition in Exploration 
We describe the cognitive stages using arguments in existing lit-
erature below, and show them in exploratory flow in Figure 1. 

1. Planning Data Analysis: Form goals [29], determine domain 
parameters [1], characterize task and data [36]. 

2. Planning Interaction: Form system operations [29], translate 
queries to attributes [14], execute appropriate interactions [28]. 

3. Planning Visualization: Design visual mappings / encodings 
[36] [14], choose appropriate views [28]. 

4. Assessing Interaction: Evaluate state-change [29], adapt men-
tal model to views [28], the gulf of evaluation [37]. 

5. Assessing Visualization: Perceive / interpret visualizations 
[28], visual-cluttering and view-change costs [29]. 

6. Assessing Data Analysis: Reason about outcomes, observe 
trends, generate hypotheses, make predictions, assess uncertainty 
[1], build confidence. 

 
Figure 1. The Cognitive Exploration Framework with six stag-
es (shown in blue boxes) and three factors: decision-making, 
motivation, and existing/new knowledge (shown in red text). 



 

 

The framework defines visualization as the purposefully orga-
nized representation of data in an abstract visual language. Inter-
action is the communication between the data and the explorer 
through the data interface. It encompasses all elements beyond the 
visual data encoding, such as control panels, buttons, and multiple 
views. Therefore, our notion of visualization strictly relates to the 
visual representation of data, and does not cover any interactivity. 

In terms of activities in data exploration, CEF identifies two activ-
ity groups—planning and assessing—that apply across data anal-
ysis, interaction and visualization. Planning activities involve 
consciously setting goals, making decisions, and identifying 
courses of individual actions to be taken to reach goals. Assess-
ment activities evaluate the courses of actions taken, data visuali-
zations (through perception), the changes in the interface, and also 
include reasoning on whether the analytical goals have been an-
swered based on available data, or not. CEF models execution, 
such as by mouse or touch, as a physical, non-cognitive stage that 
follows planning interaction, and leads to cognitive assessment 
stages. It is therefore left out of the scope of cognitive analysis. 

In Cognitive Exploration Framework, exploration flows from data 
analysis planning to analytical data assessment to generate 
knowledge (insights). This is a cyclic and dynamic flow, i.e. ex-
ploration can continue with new paths influenced by insights ob-
tained. If a path does not lead to knowledge, or if the explorer is 
stuck, s/he may retreat to produce new plans or change goals, 
although time would be lost and motivation may be reduced. The 
explorer may also act without a purposeful plan, such as selecting 
a data subset out of curiosity, and reaching insights by observing 
relations revealed by this actions. Therefore, while the path ideal-
ly starts with a well-defined data analysis plan, we recognize it 
can also be driven by serendipitous interactions. 

Next, we discuss factors that influence our model of cognition. 

3.2 The Factor of Decision-Making 
Increasing options in the exploratory process needs to be assessed 
not only by what they may enable (richer insights), but also by 
their cognitive costs. Given many options to choose from, making 
a decision is harder, and a decision is less likely to be optimal 
[47]. For example, finding the most effective visualization can be 
overwhelming given the combination of chart types, glyph types, 
color, and other visual encodings, especially for novices [16] but 
also for experienced designers [5]. Avoiding a decision also can 
be costly. Kobsa reported that Spotfire users tended to use scatter-
plot, its default visualization, (therefore avoiding chart decision) 
when another chart type would better fit [29]. 

CEF generalizes decision costs in data exploration across all 
planning activities in visualization, interaction, and data analysis. 
We argue that the options faced in the process of exploration di-
rectly influence the decision costs and therefore the cognitive 
activities. While the examples given above relate to decision fac-
tors in visualization, decision-making also applies to data analysis 
(such as identifying which questions to follow, and which selec-
tions to make), and interaction (such as selecting across two alter-
native actions that may produce the same high-level outcome, or 
creating a sequence of actions). Every decision can have a posi-
tive, or negative, outcome in the exploratory process. CEF recog-
nizes and emphasizes the factor of decision making as a potential 
cost to the cognitive activities in the process of data exploration. 

3.3 The Factor of Existing/New Knowledge 
The explorer does not only process the data and its interface; s/he 
also has existing knowledge about the data domain, interface, and 

visualizations. This knowledge can help across all cognitive stag-
es. For example, recalling personal experiences can help forming 
new queries, and assessing results in a broader context [32]. As 
the explorer gains more skills, the plans and assessments can im-
prove. However, existing knowledge is limited, non-universal, 
and varying across people. In addition, knowledge is dynamic, i.e. 
there is learning during exploration and use of the tool. The ex-
plorer iteratively uses, builds, and evaluates knowledge constructs 
[28]. S/he does not only learn about the explored data, but also 
about the interface, interactions, and visualizations, which can 
lead to more effective use of the tool over time. 

3.4 The Factor of Motivation 
What are the driving forces of the explorer to engage in data ex-
ploration? CEF identifies potential answers as the motivation 
factor. Motivation can follow the curiosity, such as to understand 
the data content and features. Being in the flow is another motiva-
tional construct. The flow—the balance between the challenge of 
a task and user skills—can apply within the context of interface 
use [4] and visual analysis [17]. Creativity is also motivating, and 
is applicable to data analysis (finding goals), interaction (combin-
ing features of the interface), and visualization (finding new forms 
to see new data perspectives). Emotions can also be motivating. 
Harrison et al. [20] found that emotion (affect) priming can influ-
ence perception of visualization. We propose that this result can 
apply to a wider range of activities in data exploration. Positive 
mood can increase motivation, and therefore exploration success. 

4. DESIGNING FOR COGNITIVE STAGES 
In visual data exploration, the data interface becomes the commu-
nicative channel between the cognition (mind) and the data. Sup-
porting cognition (and reducing barriers) is therefore most related 
to the design of the tool interfaces rather than their computational 
models. In turn, what is the relation between design and the cogni-
tive stages? How can the cognitive barriers be reduced by princi-
pled design? To answer these questions, we contribute a new cat-
egorization of 29 concrete and common design guides by linking 
them across six orthogonal stages of the Cognitive Exploration 
Framework. This section can be used to guide and improve the 
design of data exploration tools. The wide range of principles 
covered supports the rhetorical power of the CEF, which creates 
an orthogonal space for analyzing cognitive activities. 

Our selection of guides is based on the existing practices and lit-
erature. Although we aim to present a wide coverage and effective 
exemplars for each stage, offering a complete list of guides is 
impossible, and an extensive list is out of our scope. These guides 
should not be taken as rules of design, but rather directions to 
consider in designing tools that better support cognitive activities. 

4.1 Guides for Planning Data Analysis 
• Promote overview-to-detail exploration [50]. Starting with the 

data overview helps the explorer build a high-level mental 
model. Reveal detailed relations by interaction progressively. 

• Show only relevant exploratory paths. Promote never-ending 
exploration [12]. Prevent queries leading to zero results [18]. 
Systematic yet flexible discovery [41] enumerates exploratory 
paths to suggest unexplored areas and communicate progress. 

• Make exploration steps easily reversible [12]. This motivates 
action and reduces decision costs. 

• Provide traces of exploration paths. To form new goals, the 
explorer may use action histories [23]. 



 

 

4.2 Guides for Planning Interaction 
• Use direct manipulation [12], [51]. This reduces the cognitive 

distance between planning and execution through a continuous 
representation or metaphors of objects in the interface. 

• Integrate interface with visualizations [12], [17]. This promotes 
visual coherence in a single immersive environment. Scented 
widgets [59] suggest designs on merging visualizations with in-
terface elements such as dynamic query widgets [49]. Legends 
can also be designed as interactive widgets [43]. 

• Show only relevant interaction options. Design to provide con-
text; reveal interactions relevant to the selected object. Design 
based on the context; reveal contextual interfaces only when the 
explorer interacts with relevant object (e.g. show actions icons 
on mouse-over). 

• Indicate affordances of visual objects clearly [12]. Use visual 
cues to suggest interactivity [6]. 

• Design to fit the cognitive and conceptual model of the explor-
er. Allow searching for concrete data values, expose context of 
data attributes and their semantic relations, and support partial 
specification of exploration paths [16]. 

• Make every step useful and pleasing [12]. An action should not 
lead to a confusing, ineffective interface. 

4.3 Guides for Planning Visualization 
The primary means to support cognition in planning visualization 
is reducing the visualization parameters and options, starting with 
showing sensible defaults [23]. 

• Show only appropriate visualization options for the underlying 
data types and intended tasks. Recommendations may be a 
short list of suggestions, such as Tableau’s “show me” feature 
[36], which uses a rule-based design on selected attribute types, 
or a fully automated approach [45]. The context of use can also 
be considered [15]. 

• Support alternative visualizations to reveal relations that cannot 
be explored with existing views. Alternatives should be func-
tional and add minimum decision costs. For example, given cit-
ies and their populations, an ordered list would reveal the cities 
with most/least populations, a histogram would reveal the 
population distribution, a map would reveal the spatial context, 
and a line chart would reveal temporal changes. 

A common practice in visualization design is templating, in which 
the explorer selects a chart type first, and then decides which at-
tributes to map to template parameters: axes, color, size, and so 
on. However, using visualization templates can impede cognitive 
activities because they require the explorer to understand the tem-
plate parameters to make effective mappings [16]. Thinking is re-
structured to the terms of the template parameters from the terms 
of exploratory goals, potentially creating a mismatch of mental 
representations. Templates can be richer than fixed chart types 
such as flexible shelf-based systems [54] that construct a parame-
terized visualization space. We argue that revealing systematic 
parameters of a visualization design space should not be the basis 
of constructing visualizations for exploration. 

4.4 Guides for Assessing Interaction 
• Make system status clearly visible [39]. 

• Link multiple views on interaction [44]. Having multiple views 
increases the cognitive load with more visual information to di-

gest. Linking views reveals relations between data representa-
tions, and can improve mental models. Linking should be con-
sistent and intuitive. 

• Provide real-time feedback after interaction [12]. A visual 
feedback delay, as short as 500ms, can decrease exploration ac-
tivity and data coverage [33]. 

• Animate transitions between interface states [12]. Avoid abrupt 
changes and provide a sense of direction. 

4.5 Guides for Assessing Visualization 
• Use effective visual encodings. Graphical perception studies 

[10] report how accurately and rapidly we perceive data 
graphics across different encodings. 

• Use appropriate scales, grids, labels, legends [22].  

• Aim to reduce visual complexity. Avoid overlapping glyphs 
since they are a basic form of visual complexity.  

• Avoid duplicate representations. Duplication of the same data 
point may increase cognitive efforts, as it requires understand-
ing relations across multiple glyphs of the same data. Each ad-
ditional glyph also takes screen space, which is a limited re-
source that should be carefully used. 

• Aggregate data, when it cannot effectively fit in limited screen 
space, and to provide overviews. 

• Show conceptual data domain. For example, use matching 
icons (as glyphs or isographs) and matching colors for catego-
ries [48] where appropriate. Show uncertainty [1] when data 
has an uncertainty measure. 

• Animate transitions of data glyphs [24]. 

• Use available screen space effectively. Adapt the visualizations 
based on display size. 

4.6 Guides for Assessing Data Analysis 
• Provide multiple views (perspectives) of data [17], [44]. One 

visual representation cannot show all aspects of rich data. Sim-
ultaneously observing multiple views can reveal relations 
across individual views. 

• Show the semantic context of data [16], such as description of 
data attributes, categories, and data values. 

• Provide analytical models for statistical analysis. The tool can 
support the explorer to accurately evaluate findings using statis-
tical methods such as hypothesis testing with significance [1]. 

4.7 Generalized Guides across Stages 
• Aim for consistency. Inconsistencies in visualization, interac-

tion, or interface design make it harder to form goals and action 
sequences, make decisions, perceive data, and the interface 
state. Therefore, consistency can influence both planning and 
assessing stages across multiple artifacts. 

• Aim for minimalism. Make design as little as possible [37], 
[56], [60]. Showing only relevant paths and options in context 
of active state is a form of minimalism that can support plan-
ning cognitive activities. Minimalism can also reduce complex 
systems to fewer components that are easier to evaluate, thus 
supporting cognition for assessment.  



 

 

5. EVALUATION TO DETECT BARRIERS 
The success of data exploration depends on cognitive activities, 
and the cognitive barriers therein. We propose an evaluation to 
better understand the cognitive activities of the analyst/explorer. 
Specifically, we focus on challenges in data exploration and the 
cognitive barriers to collect and analyze potentially actionable 
observations. In this section, we discuss how cognitive activities 
can be observed per each stage in evaluating an exploration tool, 
and how the CEF provides a high-level structure to the analysis. 
Our goal is not to describe evaluation of a specific design guide, 
or a single stage of cognition, such as visualization perception, 
which require different setups. We don’t aim to present new 
guidelines for design, or a comprehensive analysis of an existing 
tool. Rather, we present a new evaluation approach as a lens that 
focuses on and reveals barriers to cognitive activities. 

We argue that detecting cognitive barriers requires focusing on 
failures, such as lack of goals, not being-in-flow, ineffective 
plans, and invalid insights. This is in contrast to the common prac-
tice of searching for success stories of our tools. Using benchmark 
tasks on fixed datasets does not facilitate autonomous, self-driven 
exploration. Furthermore, it may fail to motivate participants with 
a wide range of interests and background, or alienate them. We 
suggest that the participants should express their interests in se-
lecting data domain and their exploration goals in order to im-
prove their motivation and success. Furthermore, to expose all 
cognitive activities clearly, participants should be encouraged to 
interact with the tool directly without guidance by the facilitator. 
While usability studies commonly focus on physical execution 
problems and surface-level software use activities on pre-defined, 
benchmark tasks, our goal extends to reveal the cognitive process-
es of the user in a natural setting. To summarize, our study proto-
col aims to position participants as explorers aiming to discover 
meaningful data-driven knowledge in an open-ended setting to 
answer their own questions based on their interests. 

Revealing cognitive activities in depth requires moving beyond 
basic observations. For example, the explorer may want to sort a 
list alphabetically, interact with various interface components to 
find this feature, and then give up and change her goal. Detecting 
such a process as a negative outcome is instrumental to under-
standing cognitive activities, especially when such tasks cannot be 
exhaustively enumerated. How can such failed actions and goals 

be observed by the analyst or some algorithm? Software logs [19], 
eye tracking [53], and brain scans [2] have some, yet limited, 
power in describing reasoning and exploration processes. Alterna-
tively, encouraging verbal communication and analyzing the dis-
course can allow observing parts of the cognitive processes [13].  

As the basis of our protocol, we suggest that cognitive activities 
can be revealed with the facilitator observing the exploration pro-
cess for potential challenges, asking for clarifications, prompting 
for more communication based on exploratory stages and reason-
ing behind actions of the participant. These interventions should 
be minimal and focused on cognitive activities, not a test of 
knowledge or a measure of success. Surveys and others forms of 
external cognition can also facilitate communication of cognitive 
processes. Our position is that, taken together, observations, inter-
ventions, surveys and external cognitive methods can lead to iden-
tification of a rich set of cognitive activities in data exploration. 

With these goals and background, we evaluated a data exploration 
tool in the open-ended, self-driven exploration protocol with lim-
ited training, and analyzed self-reported feedback and cognitive 
activities using CEF. Our study with small number of non-expert 
participants exemplifies a range of barriers across cognitive stag-
es, suggesting that cognitive stages can be robustly observed using 
the proposed study protocol and with CEF guiding the analysis. 

5.1 Keshif: A Data Exploration Tool 
In this section, we describe the studied tool for visual data explo-
ration, called Keshif (www.keshif.me) (Figure 2). Its expressive-
ness focuses on understanding data distributions across fully 
linked selections in univariate visual summaries and record list. Its 
visualizations are fixed per data type (categorical, numerical, tem-
poral) with interaction driven by exploratory tasks. Next, we 
demonstrate the design of the studied tool. 

Sally is interested in movies, and finds a tabular movies dataset. 
Upon loading it, the tool shows that the dataset has 3.2k movies 
with 16 attributes. In this initial highest-level overview with the 
attribute list and the empty browser, Sally learns attribute names 
and the distributions of movies within each attribute using its 
visualization snippet. With her interest in IMDB Ratings, she 
double-clicks to expand it to a summary in the browser with larger 
visualization. The tool creates histogram bins on this numeric data 
based on the summary width and the range of values, aiming to 
use the space effectively. IMDB Rating disappears from the left 
panel to have only a single instance of an attribute, avoiding du-
plication. She then inserts Worldwide Gross Sales to the browser, 
placed automatically below the rating without overlaps. Distribu-
tion of data in this attribute is highly skewed (few movies have 
very high sales), so the tool applies log transformation for bin-
ning, auto-adjusting visualization to the data. Sally then inserts 
movie titles to the browser. As a unique attribute, the tool lists the 
titles in the middle panel, with sorting, text-search and ranking 
features. The record view panel is unique, and each record is only 
represented once, avoiding duplication by design. She then inserts 
the genre and the script type to the browser; both are categorical 
attributes automatically placed to the left panel. When she double-
clicks Release Date, a timestamp attribute, the tool visualizes 
distribution as an area line-chart instead of bars, since connected 
lines can improve perception of temporal trends. Release Date 
summary is placed to the bottom panel to widen the chart area for 
binning on time ranges. At any point, she can (re)arrange summar-
ies across left, right, middle, or bottom panels by drag-and-drop, a 
direct manipulation design. 

 
Figure 2. A view from exploring movies. Movies are filtered by 
release date 1992-2001. Movie names are ordered by release 
date. The black color in visualizations shows the distribution 
of movies with IMDB Rating 6-8 (locked selection), and or-
ange shows the range 4-6 (highlight selection with mouse-
over), including three highlights on movie list. Left-most panel 
shows other attributes that can be inserted to the browser. 

http://www.keshif.me


 

 

Sally then wants to focus on details on data subsets by selection. 
The tool offers three selection modalities for three goals, visual-
ized using different colors consistently: (i) mouse-over to rapidly 
highlight selections , (ii) lock a highlighted selection to compare 
it with other selections , and (iii) click to filter the dataset . 
When the data is filtered, the total distribution is shown by color 

, and the filtering state is shown using breadcrumb pattern. With 
a tight integration of interface and visualizations, summaries sup-
port direct interaction on familiar visual forms of labels, numeric 
counts, and univariate visualizations. Multiple summaries and the 
record view provide multiple views into the dataset by grouping 
and listing movies. Bidirectional linking across all types of selec-
tions creates consistency, and reveals relations across attributes 
rapidly. The tool also features part-of scale mode, which enlarges 
the visual glyphs to their full extent (100%) and enables observing 
part-of-whole distributions of highlighted or compared selections 
across record groups. 

Filtering and dynamic updates are also designed based on the data 
type. Categorical summaries support and/or/not filtering within, 
and include text-search when there are more than 20 categories. 
Numeric summaries support range queries and zooming and pan-
ning along the value (horizontal) axis. Upon filtering, categorical 
attributes are re-ordered with larger measurements on top, unless 
the attribute is ordinal. To zoom into a numeric range, Sally needs 
to first filter a range, which makes the zoom-in icon visible (when 
relevant), and then she can zoom into the filtered range, which 
changes the icon to zoom-out. Thus, zooming is controlled by 
only a single contextual button. Upon zooming, the numeric bins 
are re-adjusted to fit the zoomed range. The tool also animates 
changes in visualizations and panel layout. 

5.2 Study Design 
To detect cognitive activities and barriers in exploration, we de-
signed a casual setting with a 15-minute exploration per dataset, 
and 5-minute training for using the tool. As existing knowledge 
and extensive training can reduce the barriers that the evaluation 
aims to detect, we aimed to recruit novices in data analysis, and 
offered limited training. The participants chose two multivariate, 
tabular datasets they would like to explore given five options: 
movies, traffic accidents, passengers of the Titanic, Lego sets, and 
foodborne disease outbreaks. The record (row) count ranged from 
3.2k to 30k, and the attribute (column) count ranged from 8 to 16. 

To encourage communication on exploration and emotional states, 
we implemented an external strategy using printed cards. One 
group of cards described exploratory process: (i) “I am trying to 
find a question.” (planning data analysis) (ii) “I am trying to an-
swer a question.” (planning interaction & visualization) (iii) “I 
have an insight.” (assessing data analysis). Another group of cards 
focused on negative emotions: “I feel...” (i) confused, (ii) unde-
cided, (iii) lost, (iv) bored, and (v) frustrated. The use of cards was 
not mandatory; the participants could talk on their observations 
and challenges without picking or pointing to cards. 

Procedures and data collection. At the beginning of the study, 
the participants completed a background survey on demographics 
(age, sex), existing knowledge in data analysis, visualization, and 
computer use/interaction, and overall motivation in data explora-
tion, using a talk-aloud protocol. Then, they were trained with a 5-
minute video tutorial, which described the tool features while 
demonstrating data analysis, and 20-slide printout for future refer-
ence. After the training video, the facilitator presented the cards, 
and asked the participants to think aloud while exploring data, and 
use the cards if appropriate. To gain familiarity with the tool and 

the study process, the participants explored the training dataset for 
5 minutes. Then, they explored two datasets of their interest, 15 
minutes each. The facilitator answered questions about the tool 
based on the training material. While we encouraged self-driven 
exploration without external tasks, the participants could pick 
among five sample questions per dataset. After each dataset, the 
participants completed a survey that encouraged recalling both 
positive and negative experiences, using ten Likert-scale questions 
based on [40]. We recorded the screen and the audio in the room 
during participation in our study. To detect the cognitive barriers, 
the lead author watched the videos and took note of the problems 
faced by the participants, and their relevant verbal feedback, in-
cluding feedback based on the surveys. He then classified them 
across the six cognitive stages. 

Participants. We recruited participants using public message 
boards. Our participants were non-experts in data visualization 
and analysis. Our study included pilot-sessions with two partici-
pants and reported-sessions with three participants (P1, P2, P3). 
P1 was a male student in biology, age 18- 24. P2 was a female 
professional in finance, age 40-49. P3 was a female student in 
food science, age 18-24. All participants were familiar with basic 
chart types (bar-charts, histograms, line-charts, maps), and none 
were familiar with advanced chart types (scatterplots, treemaps, 
node-link diagrams and ||-coords) by name. The self-reported 
computer skills were novice (P1, P3), intermediate (P2), and none 
advanced. All participants had experience with Excel, including 
basic visualizations, data entry (P1), formulations (P2), and none 
had experience with other data tools. Their motivation to join the 
study was curiosity (P1, P2, P3), and earning money (P2); $10 for 
their 1-hour participation. While this reflects the demographics of 
the study location, a university campus, their data analysis experi-
ence were none (P1) or infrequent (P3), only P2 noting to fre-
quently analyze data “to figure out the yield on investments.” The 
participants were interested in the following domains: movies (P2, 
P3), traffic accidents (P1), foodborne outbreaks (P1, P3) and Ti-
tanic passengers (P2). Per each participant, the use of sample 
questions to bootstrap exploration was: P2-none, P3-1 question, 
and P3-multiple questions. 

5.3 Exemplar Barriers per Cognitive Stage 
In this section, we demonstrate the application of the Cognitive 
Exploration Framework for tool evaluation using the proposed 
protocol. We report exemplar barriers faced by our participants. 

5.3.1 Barriers in planning data analysis 
Talking about his experience, P1 noted, “Maybe I felt like I had 
too much control, but I wasn’t ready for it”, and added “I wasn’t 
quite able to figure out what I wanted to figure out.” He stated he 
was overwhelmed at points (by multiple views), noting, “It’s just 
a lot to take in. A lot of different elements to consider… I don’t 
understand how to put (a lot of information) together.” P2 set 
some serendipitous goals, “Let me see (filter) Clint Eastwood and 
see what happens.” When picking sample questions, P1 noted on 
his motivation, “I want to find something… that I’d personally 
want to get the answer to.” In addition, to save the limited time, 
P1 did not want to pick questions that looked complicated to an-
swer. Goals were also constrained by the content of data. P3 said, 
“(the data) doesn’t have enough criteria to give you a definite 
answer”, as she wanted to relate diseases from fish consumption 
to fish production per state. To address the information overload, 
the tool can be designed to offer simplified authoring interfaces, 
or to encourage step-by-step guided exploration. Sample goals can 
be provided from simple to complex as the user gets familiarity 
using the tool. 

https://docs.google.com/forms/d/1DLw4IcxRgEx-7_vN99bPc0yEO3cqIth_6o82ZATpT5U/viewform
https://www.youtube.com/watch?v=3Hmvms-1grU
https://www.youtube.com/watch?v=3Hmvms-1grU
https://docs.google.com/presentation/d/1beCw3KiFjWLdVfgp8EICFPNPiuu2UzX8PFbcirJFQVw/edit
https://docs.google.com/document/d/1HqK0fJOw2KSA_M59YxQj9PRLqftoHen8bc4yK1Wg5-c/edit
https://docs.google.com/forms/d/1KF8OikNa-GUjiCajEYznkRocIAHWFO5SgMxRBMYeKsc/viewform


 

 

5.3.2 Barriers in planning interaction 
After getting stuck in a question, P1 noted, “The computer doesn’t 
really know the question that I have (…) I am confused about how 
to go by answering that question, or if the method I’m using is 
actually the right way.” P3 was confused after an ineffective se-
quence of actions—filtering, locking, and selecting the same his-
togram bin—where she noted, “I don’t know what exactly I’m 
trying to do.” Participants also updated interaction plans and goals 
given the design and limitations of the tool. To search for specific 
values, P2 first wanted to alphabetically sort categories and rec-
ords (not supported), then she used text search, an appropriate 
strategy. When P2 wanted to sort few movies by year, which 
could be achieved using sorting dropdown, she hovered the cursor 
over movies to automatically highlight their year within summar-
ies. Being satisfied with this approach, she discarded her original 
sorting plan. We also observed some learning challenges with 
contextual interfaces. P3 wanted to resort categories in reverse, 
however was not able to easily find the sorting button because it 
was hidden by default, and shown only on mouse-over in catego-
ries. She later suggested, “If I had more practice with this, I would 
definitely be in more control.” 

To address the change-of-plan during sorting goal, we updated the 
design of the tool to include a sorting button within the summary 
in addition to the sorting option combobox. The tool can also be 
improved to identify repeated actions to reason about user intent, 
and suggest relevant actions to help the user plan for interaction. 

5.3.3 Barriers in planning visualization 
With the selected tool, activities related to planning visualization 
include aggregate selection modes (highlight, compare, filter) and 
part-of/absolute mode. This contrasts to the charting tools that 
would require more careful planning to construct effective visual-
izations. Therefore, barriers in this stage were not frequently ob-
served. In trying to find the most common food outbreak in differ-
ent months, P3 filtered through multiple months, while highlight-
ing would be more effective. Another barrier was that participants 
could not plan to execute part-of scale mode change, as no partic-
ipant in our study used part-of scale. This may reflect that their 
questions may not have required such views, but also suggests 
that the limited knowledge about how this mode could be used 
effectively. The tool design may be improved to communicate and 
clarify the use of part-of scale mode to answer related questions. 

5.3.4 Barriers in assessing interaction 
Failing to consider filtering selections correctly was a common 
barrier leading to false conclusions about general, or targeted, 
populations. After unfiltering a selection, P1 said, “I forgot that I 
had still filtered everything for the norovirus.” When P2 wanted 
to analyze survivors of the Titanic, she highlighted non-survivors 
and reached a wrong conclusion about their ages. She realized and 
corrected her mistake shortly after. P3 interpreted the full bar 
length in a filtered summary to support her misunderstanding that 
the complete dataset was selected. P3 also misinterpreted how 
selections are linked across summaries, saying “If I lock (this bar), 
there’s no way I could compare to (another summary) because 
they are two different things.” Overall, tracking multiple selection 
states was found to be a non-trivial task for the novices in our 
experiment. The tool can be updated to offer simplified interactiv-
ity to reduce confusion on dynamic selection changes. 

5.3.5 Barriers in assessing visualization 
P1 was confused about what the numbers represent upon selec-
tion, saying “Is this number representing fatal accidents, or just 
accidents or is it drunk vs. non-drunk. . . . Ok, I didn‘t realize 

there are two different colors.” P2 tried to understand linked high-
lighting selections by hovering on different bars, observing num-
bers, and making connections. P3 had trouble observing exact 
filtering range within the line chart because of its design. The 
rounding of histogram end-points also lead to wrong interpreta-
tions. With maximum duration of movies at 157 minutes, the high 
end-point of histogram was rounded to 300 minutes, an anomaly 
of the log scale used by the tool. With this view, P3 interpreted 
there were movies up to 300 minutes. Real maximum value could 
be observed by sorting movies in decreasing duration. We later 
improved the design of our tool by placing the maximum-tip on 
the scale to the real maximum value, instead of the maximum of 
the histogram bin range that may exceed true maximum. Filtering 
range limits can be more explicitly noted in interval summaries,  
as well as information about what each number presents in the 
charts under different selection configurations. 

5.3.6 Barriers in assessing data analysis 
Understanding data semantics was a common challenge. P2 asked 
“How do I find the definition of vote count?”, and later removed 
this summary from the browser. P3 asked, “What is ’ethnic style, 
unspecified’ (as food type)? That could be anything.” and then 
noted, “This doesn’t really affect the program, it’s just the data 
itself.” Notice that these comments to not reflect to either visuali-
zation or the interaction design, and relates to data concepts relat-
ed to analysis. Unexpected findings raised suspicions, with partic-
ipants concluding, “if I’m interpreting right (P1)”, and “if I’m 
reading right (P2)”. Acknowledging an inappropriate strategy to 
reach answers, P1 said, “I am merely associating these numbers 
with the question that I have.” When only 10-20 outbreaks were 
selected after filtering, P3 concluded about statistical trends and 
did not discuss limitations of their significance. No participant 
recognized that some summaries did not include all records, e.g. 
there were movies without rating information. Another issue was 
potentially misleading inferences across summaries. When the 
filtered movies had high-ratings, and kids movies were common, 
P3 (incorrectly) inferred that kids movies had high ratings, with-
out querying further to confirm her intuition. 

To address assessment challenges in data analysis, providing con-
textual information about metadata would be helpful. Warnings 
can be presented when few records remain to make statistical 
conclusions, or missing records can be highlighted explicitly. 

5.3.7 The Factor of Existing/New Knowledge 
Our participants were non-experts in visual data analytics. We 
further limited training and studied a casual short-term use to limit 
the factor of knowledge. We observed this approach influenced 
the experience and feedback of our participants. P1 said “It’s been 
a while since I looked at charts… You have to re-familiarize your-
self with all the information it represents.” P2 “felt discouraged, 
just in the very beginning, as I was getting used to the tool.” P3 
added “You never really learn it until you actually try to do it.” 
These feedbacks point to the active learning experience of the 
participants during the use of the tool. 

6. DISCUSSION 
6.1 Construction of the Framework 
We presented the Cognitive Exploration Framework to provide a 
comprehensive overview of cognitive activities, the role of design 
in cognition, and how barriers to cognitive activities can be the 
focus of evaluation of tools. To construct the framework, we itera-
tively identified and refined various arguments about cognition 
and barriers in related literature (see Section 2) as well as our own 



 

 

experiences in evaluation and interface design. For example, the 
gulf of execution and evaluation [39] models physical or lower-
level cognitive activities, while Lam [31] focuses on interaction-
related usability problems. Both models are used to build our 
framework after separating physical execution stages. Our frame-
work is further enriched and supported by other arguments such as 
positioning of analytical gaps and activities [1], and results from 
empirical user studies [5], [16], [30]. Overall, we noticed similar 
themes across taxonomies and empirical studies stated in different 
perspectives. We hope that the six-stage orthogonal overview of 
the Cognitive Exploration Framework and its relation to design 
and evaluation will provide a concrete, lean basis to understand 
cognitive challenges of visual data exploration and analysis. 

6.2 Implications for Design Guides 
Our overview of design guides suggests that existing literature 
provides many guidelines and discussions for interaction and vis-
ualization design. However, high-level data analysis and planning 
stand as cognitive activities with opportunities for more results 
and guidelines with future studies. One of the challenges is identi-
fying how people reason about data and plan for data analysis. 
Another challenge is evaluating high-level outcomes of explora-
tion and cognitive planning activities. Equipped with better mod-
els for cognition and evaluation methods that expose new metrics 
and processes, new improvements and guides may be enabled. 
The results and examples from our user evaluation support that 
high-level cognitive activities can be analyzed qualitatively by 
observing failures in user behavior and verbal feedback. 

6.3 Evaluating Tools for Cognitive Barriers 
To detect cognitive barriers, we designed an experiment with an 
open-ended exploratory setting, allowed the participants to choose 
a dataset and exploratory goals of their interest to increase motiva-
tion, and applied brief interruptions to encourage the participants 
to communicate their exploratory process and their negative emo-
tions/experiences in a safe environment. While insight-based 
methodologies [46] focus on the success stories to quantify the 
observed value of a tool, a principled way to understand failures 
reveal opportunities for improvement. Our evaluation is a reflec-
tion of the open-ended data exploration approach, aiming for the 
unknown and the intangible in the process of exploratory cogni-
tion and generating qualitative, rather than quantitative, value. We 
showed that CEF can be applied in practice to detect and catego-
rize observed barriers on cognition effectively, although we did 
not create CEF on empirical results from this particular study. 

Our study design can be replicated or modified to study cognition 
in more depth. While we used think-aloud protocol and discourse 
analysis along with actions observed in video and notes taken by 
the facilitator, this approach has its own limitations, especially for 
comprehensiveness. This qualitative analysis can be coupled with 
other forms of behavior tracking, such as software logs and eye 
movements, to add quantitative support for detecting cognitive 
activities. Using pair analytics protocol [3], the cognitive stages 
can be distributed across subject matter expert (high-level cogni-
tion in data analysis) and visual analytics expert (low-level cogni-
tion in interaction and visualization). 

In retrospect, we observed that the participants rarely used the 
cards to express their emotional and exploration state. While ex-
ternal anchoring may be beneficial to reveal more activities, the 
participants were either immersed in their data exploration, or was 
not paying attention to the cards that were displayed on the table 
next to the study laptop. Embedding these feedback mechanisms 
on the interface of the tool may make them more prominent. The 

benefit of such external mechanisms can be studied further to 
detect if they lead to more communication. As we had a small 
number of participants, we used the survey as a way to collect 
more feedback from the participants rather than to build a semi-
quantitative analysis. Selected quotes we reported include feed-
back during the completion of post-exploration survey. We sug-
gest the use of surveys to create opportunities to gather more 
feedback about the experience of the participants. 

Since our goal is to find exemplar barriers in this preliminary 
study, we did not fully transcribe the sessions that require higher 
effort and resources. Having more participants, full transcriptions 
and multiple passes over the recorded material may reveal more 
cognitive activities in the use of a studied tool. 

6.4 Effort Differences across Cognitive Stages 
Do all cognitive stages require the same mental effort? Daniel 
Kahneman [25] argues that our cognitive activities are two-folded: 
system-1 (thinking fast) and system-2 (thinking slow). System-1 
is how we make quick decisions, take short-cuts, apply our cogni-
tive biases, etc. It is less deliberate and more spontaneous. Sys-
tem-2 is how we engage in a more effortful thinking, be more 
analytical, evaluate facts, and even actions of system-1. We argue 
that the stages of planning and assessing data analysis requires 
higher cognitive efforts as a slow thinking activity, and that fast 
thinking activities include perception of visualizations, evaluation 
of interface and planning for low-level actions respectively. Fu-
ture research may investigate the differences of effort in cognitive 
activities in data exploration under various settings. 

6.5 Contextual Limitations of the Framework 
The framework is developed for self-motivated data exploration 
of an individual given a specific dataset and a tool that enables 
exploration. We clarify the limitations of our context below. 

Finding data: The framework assumes data has a well-defined 
structure and content. It does not discuss finding or wrangling 
data [26]. Such activities, before data planning, can be modeled a 
recursive exploration for data. 
External objectives: If questions are known in advance, explora-
tion is not necessary, just methods to query. Understanding the 
objective is a natural challenge given predefined objectives [30]. 
The framework separates external objectives, and values explora-
tion as autonomously evolving goals in a dynamic environment. 

Collaboration: We modeled the explorer as an individual. Inter-
action with other explorers brings new cognitive activities, such as 
creating and following shared plans, and collaborative learning. 
Collaborative exploration is a richer process beyond our scope. 

Tasks: We argue that tasks in exploration originate from cogni-
tive planning activities with discovery purposes. However, CEF 
does not aim to provide a model of tasks (e.g. [7]). 
Knowledge representation: The framework does not describe 
the form of cognition, such as frames, schemata, or propositions 
[28]. The activities, such as making decisions, evaluating results, 
and generating knowledge, are transitions on such forms. To 
guide the explorer through externalized representations, the tool 
may facilitate capturing extracted knowledge or exploration paths. 

7. CONCLUSION 
In this paper, we focused on the cognitive activities in open-ended 
visual data exploration. By identifying planning and assessment as 
cognitive activities across data analysis, interaction, and visualiza-
tion, we presented the Cognitive Exploration Framework for visu-



 

 

al data exploration that is composed of six orthogonal cognitive 
stages. We used the framework to identify how established design 
guides interact with the cognitive stages. We then demonstrated 
application of the framework in evaluating a data exploration tool 
by focusing on the failures and challenges on self-motivated, au-
tonomous data exploration using data analytics novices with lim-
ited training in a casual setting. 

While our analysis exemplify a range of barriers tied to the 
framework (some of which are potentially addressable by incre-
mental design improvements), it also raises questions about how 
to better support analytical goal formation and analytical evalua-
tions by design. Providing a sense of control and ease while in-
creasing the expressive power of tools is a major challenge. To 
move beyond the casual setting of our demonstrative user evalua-
tion and to observe complex activities, future studies may increase 
training, motivation, domain knowledge and skills of the partici-
pants. Identifying the influence across cognitive stages and quan-
tifying the differences in efforts can further guide better design of 
our tools, allowing us to explore data in depth more rapidly. 
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